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Abstract— Accurate and efficient traffic flow prediction
helps to build an intelligent transportation system and
improve the travel experience in daily life. In this study, a
new Spatial-Temporal Neural Network Based on Unsupervised
Graph Representation Module (UG-STNN) is proposed
to improve the graph convolution module, which uses
unsupervised learning to extract features in spatial dimensions,
and it can learn the structural and feature information in the
graph better. Our UG-STNN uses fewer convolutional layers to
reduce the number of parameters, decrease the complexity of
the model, and improve performance and accuracy. From the
experimental results of UG-STNN on different test datasets, the
model can approach or even achieve better prediction results
compared with other models, which well illustrates the accuracy
and stability of the UG-STNN model.

I. INTRODUCTION
In recent years, with the in-depth integration of cloud

computing, Internet of Things, big data, mobile Internet and
other electronic information technologies with the transport
industry, Intelligent Transportation Systems (ITS) have been
gradually constructed and continuously improved in central
cities around the world. Accurate and efficient collection
of spatial and temporal data related to traffic flow is an
important prerequisite for the construction and improvement
of ITS. Traffic flow prediction tasks predict the future
traffic flow at the target location based on previous traffic
patterns and trends, which is then used as the necessary
data for subsequent traffic system planning, flow control,
accident prevention and control tasks [1]. This process
significantly reduces the cost of resources and time required
for traffic flow data collection and is therefore one of the
main alternatives to traditional methods such as sensors and
closed-circuit monitoring.

In the field of traffic flow prediction, the majority of
early methods are based on statistical time series models and
machine learning models[2-4]. These methods have a limited
effect on the extraction of complex spatial-temporal features
and are susceptible to noise interference. Consequently, it
is challenging to achieve accurate prediction outcomes. In
recent years, deep learning methods, in particular those based
on spatial-temporal graph neural networks, have yielded
significant advances in traffic flow prediction [5]. The graph
neural network method employs a graph structure to describe
the spatial relationship between traffic network nodes. The
combination of temporal neural networks with the extraction
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of temporal features greatly enhances the accuracy of traffic
flow prediction.

Graph Convolutional Network (GCN) [6] is one of the
most common modules used in the application of graph
neural networks mentioned above in traffic flow prediction
tasks. The model can be used to obtain spatial dependencies
between nodes by learning how information is transferred
between target nodes and their neighbors. By stacking
the modules in multiple layers, information is transferred
between a target node and its directly connected nodes
(one-hop neighbors) first, then indirectly via the one-hop
neighboring nodes to the two-hop neighboring nodes, and
so on. Since the structure of the model is learned for each
target node separately from the information transfer to the
relevant nodes in the graph, there is no need for the data
to be arranged in a structured manner, which enables more
convenient handling of complex unstructured data such as
traffic flow. Most of the subsequent models have utilized
and improved upon this GCN module, achieving stable and
effective prediction performance [7-8].

However, for large-scale and complex traffic networks, due
to the complex connectivity relationships presented between
nodes, in order to improve the prediction accuracy, a stack
of more layers of GCNs is generally required compared
to other graph learning tasks. This not only leads to a
dramatic increase in the number of parameters in the model,
which substantially increases the training cost. At the same
time, due to the structure of the GCN itself, the stacking
of multiple layers of GCNs tends to smooth the output.
According to the statements from the developers, the GCN
model may have stable performance before the number
of hops reaches 7. After that, with the number of hops
increasing, the prediction performance of the GCN-based
model will drop dramatically [9]. Fig. 1 below illustrates
the results of an experiment where GCN was applied to
three public datasets (Cora, Citeseer, and Pubmed) during
the study’s preparatory phase, which also proves the above
statement.

Problems above limits the further improvement of the
accuracy of GCN-based traffic flow prediction models.
To address these problems, a novel unsupervised graph
representation learning module is applied in this study. The
module automatically learns the representation of nodes and
edges from the complex node connectivity relationships in
the graph structure through graph contrastive representation
learning, which helps to better extract and apply the implicit
features in the graph structure. This effectively avoids the
problem of stacking GCN layers due to the complexity of



Fig. 1. The effect of different GCN layers

the graph structure, and enables the model to maintain good
performance and trainability. Further, this study combines the
module with a temporal convolution module to propose the
Spatial-Temporal Neural Network Based on Unsupervised
Graph Representation Module (UG-STNN) model, and
validate it on different datasets in China and abroad.Test
results and ablation experiments on the traffic flow prediction
task show that the model as well as unsupervised graph
representation learning module is stable and effective.

II. RELATED WORK

The traffic flow prediction problem is typically a
spatial-temporal data prediction problem, in which the traffic
flow at a target location at a target time is not only
related to the historical traffic flow at that location (temporal
dimension), but also related to the traffic flow at the current
moment at its nearby locations (spatial dimension) [10].
Therefore, it is required that the prediction model is able
to extract the spatial-temporal information between the data
simultaneously and efficiently to achieve better prediction
performance.

Compared with the structured time dimension, it is
more difficult to extract features in the unstructured spatial
dimension, and it has been a hot topic in the research
of traffic flow prediction problems in recent years. The
introduction of GCN has enabled traffic flow prediction
models to make great improvement in prediction accuracy.
One of the early representative works that applied GCN
to the traffic flow prediction task is the Spatio-Temporal
Convolutional Network (STGCN) [11]. The main structure
of the model consists of two Temporal Convolutional
Network (TCN) [12] modules and a GCN module to
extract the spatial and temporal correlations of traffic
flow, respectively. Further improvements on this basis
include the use of different methods for node neighborhood
determination (Diffusion Convolutional Recurrent Neural
Network [13] and ST-MetaNet [14]), the use of an
adaptive graph representation (Multi-Task Graph Neural
Network [15] and Dynamic Graph Convolutional Recurrent
Network [16]), and the introduction of Self-attention
mechanism (Attention-based Spatial Temporal Graph
Convolutional Network [17] and Graph Multi-Attention
Network for Traffic Prediction [18]), etc.

As mentioned in Section 1, those GCN-based models
do not structurally address the problem of increased

model training costs and smoothing of outputs when
multiple layers of GCNs are stacked. Unsupervised graph
learning [19-23], on the other hand, can use unlabeled
data to automatically extract features of the data or data
distribution patterns without manual labeling. In contrast
to the pre-determination of connectivity between nodes,
unsupervised learning methods incorporate a graph learning
layer in the model to learn the optimal path for information
transfer. This enables information to eventually be passed
between nodes that are neighbors at any number of hops
according to the pattern learned by the model, regardless
of whether they are adjacent or not. Therefore, this study
suggests that the use of unsupervised graph learning methods
may be an effective means of solving the multilayer GCN
stacking challenge.

However, the above representative works mainly focus
on link representation learning of graphs (edge level) and
overall representation learning of graphs (graph level). It
is not applicable to the node-level task of traffic flow
prediction. Therefore, this study proposes a node-level, graph
representation learning method based on generating different
views for comparison. The aim is to more fully extract and
utilize the potential information of the graph structure to
enhance the efficiency and accuracy of subsequent prediction
tasks.

III. METHODOLOGY

This section describes the structure of Unsupervised Graph
Representation Module, Temporal Convolutional Module and
overall structure of UG-STNN model.

A. Unsupervised Graph Representation Module

The spatial convolution module of UG-STNN is
implemented by unsupervised learning at the node level.
The core process of this module is to learn by comparing the
structural similarity of two new graphs generated based on
the original graph. Specifically, for the input graph structure,
the original graph is first randomly destroyed to generate two
subgraphs. As illustrated in Fig. 2, the destruction is done
by removing some edges and masking some features of all
nodes in the same generated subgraphs.

Fig. 2. Removing edges and masking features



For edge removal, a matrix M ∈ {0, 1}N×N is randomly
generated, whose elements obey the Bernoulli distribution
Mij ∼ B(1, pl), where pl is the probability that each edge is
removed. Let A be the adjacency matrix of the original graph.
Then the Hadamard product of A and M , i.e. Ã = A◦M , is
the adjacent matrix of the generated subgraph.

Similarly, for the masking of node features, the matrix
m ∈ {0, 1}F is randomly generated, whose elements obey
the Bernoulli distribution mi ∼ B(1, pn), where pn is the
probability that each feature is masked. Let X be the feature
of node in the original graph. Then the Hadamard product
of X and m, i.e. X̃ = X ◦ m is the node features of the
generated subgraph.

After generating the two subgraphs, the next step is
to compute the embedding, S = φ(Ã1, X̃1)and T =

φ(Ã2, X̃2)of the two subgraphs to represent the nodes in
the graph. There are different available choices of encoder
φ. Based on the properties of traffic network, GCN is used
as a trainable encoder in UG-STNN.

Next, the generated two subgraphs are compared for node
consistency. As shown in Fig. 3 below, same nodes ( si and
ti) in the two subgraphs are defined as positive node pairs,
while different nodes ( si and other nodes) in two subgraphs
are defined as negative node pairs.

Fig. 3. Comparison of nodes

Accordingly, the consistency of a positive node pair can
be defined as:

ϕ(si, ti) = log
e

ρ(si,ti)

η

e
ρ(si,ti)

η +
∑N

n=1 δ[n ̸=i]e
ρ(si,tn)

η

(1)

ρ(s, t) = c(f(s), f(t)) (2)

where:
f : Trainable multilayer perceptron function (MLP)
c : Cosine similarity function
η: Adjustable temperature hyper-parameter
δ: Binary function, its value equal to 0 when n = i, equal

to 1 otherwise.
Φ: Consistency of the node pair.
Based on the above definition of node consistency, the

proposed module can learn the optimal graph representation
by maximizing the similarity of positive samples and

minimizing the similarity of negative samples. The
parameters of the trainable GCN and MLP are adjusted to
make similar node pairs closer together in the representation
space, while dissimilar node pairs are more scattered. The
objective function used in this model is to maximize the
average of the node consistency of positive node pairs and
is deformed as shown in Eq. (3) to facilitate the gradient
calculation.

maxω =
1

2N

N∑
i=1

[ϕ(si, ti) + ϕ(ti, si)] (3)

Overall, the algorithm of the proposed Unsupervised
Graph Representation Module is: Firstly, two subgraphs
are generated by destroying the original graph. Then the
nodeembedding is performed by applying GCN. Based on
the embedding results, the consistency of positive node pairs
can be calculated as the objective function to train the
parameters of GCN and MLP.

B. Temporal Convolution Module

The UG-STNN uses a temporal convolution module as
shown in Fig. 4 below to extract temporal information. The
module consists of a two-dimensional temporal convolution
layer to extract short-time temporal correlations, and a
Dilated convolution layer with a large sensory field to capture
long-range dependencies.

Fig. 4. Temporal Convolution Module

C. Structure of UG-STNN

The overall structure of the UG-STNN model is shown
in Fig.5. The unsupervised learning module is first used to
extract the graph structure features, and then the temporal
dimension is convolved. The spatial convolution can
capture the spatial relationship between nodes and extract
the spatial feature representation of nodes at target time
slot. Temporal Convolution allows further processing of
these spatial features in the time dimension, capturing
the dynamically changing features of the nodes between
different time intervals. The model also contains an output
layer (nonlinear activation function, normalization, fully
connected) to process the results after the spatial and
temporal modules.

IV. EXPERIMENT AND ANALYSIS

The main contents of this section include experimental
preparation, experimental results and analyses.



Fig. 5. Structure of UG-STNN

A. Experimental Preparation

1) Problem Definition: The traffic flow prediction task
can be defined as: give the historical measurements of all
the nodes on the traffic network over past t time slices to
predict future traffic flow sequences F = (f1, f2, . . . , fN ) ∈
RN∗pof all the nodes on the whole traffic network over the
next p time slices, where f i = (f i

t+1, f
i
t+2, . . . , f

i
t+p) ∈ Rp

denotes the future traffic flow of node i from t+ 1.
2) Experimental Environment: All the experiments in this

study are conducted on a server with a single Intel Xeon
W-2133@3.6Hz CPU and one 32 RAM NVIDIA V100 GPU.

3) Dataset: Two public datasets shown in the following
TABLE I are applied to the experiments in this section. The
dataset is divided into three distinct subsets: a training set,
a validation set, and a test set, allocated in a proportional
distribution of 7:1:2. Since it involves time series data
analysis, the division is done by taking successive values
according to the time series. The predictive model undertakes
the extraction of pertinent information from the preceding
3, 6 and 12 temporal intervals, consequently forecasting
forthcoming traffic flow dynamics at the 3rd, 6th, and
12th intervals (15min, 30min and 60min), respectively.
Employing the identical dataset, pertinent models are trained
and assessed, with the final evaluation derived from the
average performance across 10 iterations of testing.

4) Baseline: The following six models: STGCN,
ASTGCN, GMAN, DCRNN, MTGNN and DGCRN are
used as baseline models in this study. Their underlying
theory associated with these models has been briefly
described in the related work section. Except for the
necessary modifications to the hyper-parameters such as
the dimensions of input and output that ensure program
operation. The rest of the hyper-parameters such as network
composition, learning rate, masks, etc. use the optimal
values provided in the open source code of the methods.

5) Evaluation Indicators: Following three evaluation
indicators are used in this study to assess the performance
of the model:

Root Mean Square:

RMSE =

√√√√ 1

m

n∑
i=1

(h(xi)− yi)
2

Mean Absolute Error:

MAE =
1

m

n∑
i=1

|h(xi)− yi|

Mean Absolute Percentage Error:

MAPE =
100

m

n∑
i=1

∣∣∣∣h(xi)− yi
yi

∣∣∣∣
B. Experiment Results

TABLE II presents the results of the testing of the six
baseline models and the proposed UG-STNN model. In
addition, the UG-STNN-A model is used as the ablation
experimental model and its results are also presented in
TABLE II. The model uses linear layers to replace the graph
representation learning module in the original UG-STNN
model to validate the effectiveness of the module.

Fig. 6 compared the prediction results of different models
in the same dataset (METR-LA), at the same time interval
(15 min) for a specific vertex. In these six subfigures, the
horizontal axis represents time intervals and the vertical axis
represents traffic flow. The red line in the figure represents
the ground truth value. In other words, the closer the
predicted value is to the red line, the better the prediction
performance of the model.

Fig. 7 presents a comparison of the prediction results of
different models in the same dataset (METR-LA), at the same
time slice for all vertices. For clarity, only MTGNN and
DGCRN, the top two ranked baseline model are presented.
The ground truth is distributed on the line of y = x. That is,
the more convergent the results to the line y = x, the better
the prediction performance is, and vice versa.

C. Analysis

As it can be seen in TABLE II, UG-STNN achieves the
state-of-the-art results on more than half of the total nine
test sets (three datasets * three time slices) and evaluation
matrices, with some of the results even outperforming
baseline model by more than 10%. UG-STNN also ranked
in the top three on the remaining test sets. Therefore, the
effectiveness of UG-STNN and the proposed Unsupervised
Graph Representation Module, in traffic flow prediction tasks
can be well illustrated.

Fig. 6 shows that UG-STNN can extract features and make
reasonable predictions regardless of whether the traffic flow
is in the peak, valley or normal range. However, the longer
the time span of the prediction (from 3 slices to 6 slices then
to 12 slices), the smoother the prediction results become.
At this point, the model becomes less sensitive to small
fluctuations and its predictions become less accurate. This
shortcoming is inherent to the time module itself. Solving
the long-range dependence problem in time series analysis
has proven to be challenging.

Fig. 7 shows that compared with the baseline models,
the advantage of UG-STNN is that the prediction results
are more accurate when the flow of the target vertex is
high or low. The reason for the worse prediction results



TABLE I
DATASETS

Dataset No. of Nodes No. of Time Slices Description
PEMSD7M [11] 228 12672 District 7, the state of California
METR-LA [24] 207 34272 Los Angeles Metropolitan
PEMSBAY [25] 325 52116 Bay Area, the state of California

TABLE II
EXPERIMENT RESULT

Time Steps
Datasets Model 3 Steps (15 Min) 6 Steps (30 Min) 12 Steps (60 Min)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STGCN 5.364 3.496 6.40% 6.698 4.243 8.21% 7.863 4.795 9.96%
ASTGCN 5.457 3.57 6.95% 6.638 3.981 8.75% 7.745 4.676 10.73%
GMAN 6.625 3.947 8.35% 7.245 4.243 8.98% 8.834 5.017 11.57%

PEMS7M DCRNN 5.733 4.546 6.68% 6.867 3.965 8.54% 8.387 4.703 10.92%
MTGNN 5.232 3.27 6.13% 6.453 3.834 7.87% 7.641 4.354 9.44%
DGCRN 5.172 3.134 6.24% 6.034 3.765 7.83% 7.845 4.397 9.63%
UG-STNN 5.073 3.301 6.07% 6.546 3.782 7.33% 7.25 4.369 9.37%
UG-STNN-A 7.262 4.859 10.01% 9.788 6.351 12.85% 12.974 6.420 13.77%
STGCN 7.402 4.697 10.31% 9.453 5.356 11.78% 10.684 5.675 13.61%
ASTGCN 7.398 4.735 9.78% 8.622 5.413 11.38% 11.004 5.961 14.56%
GMAN 9.785 6.786 11.05% 10.673 6.941 11.93% 11.768 8.638 13.83%

METR-LA DCRNN 7.292 4.645 9.86% 8.56 5.347 11.66% 10.453 5.945 13.43%
MTGNN 7.253 4.296 10.12% 8.466 4.503 11.67% 10.127 5.387 13.14%
DGCRN 7.248 4.267 9.05% 8.35 4.359 10.85% 9.837 5.241 13.26%
UG-STNN 7.083 4.271 9.18% 8.149 4.393 10.32% 9.345 5.253 12.96%
UG-STNN-A 9.339 6.328 12.55% 11.062 7.011 14.75% 14.825 8.833 15.03%
STGCN 3.533 1.899 3.54% 4.492 2.349 4.95% 5.998 3.231 5.96%
ASTGCN 3.347 1.723 3.47% 4.402 2.269 4.89% 5.574 2.847 5.47%
GMAN 3.301 1.876 4.65% 4.037 2.256 5.067% 4.985 2.632 5.78%

PEMSBAY DCRNN 3.078 1.764 3.27% 3.956 2.187 4.55% 5.416 2.764 5.95%
MTGNN 2.967 1.634 3.06% 3.750 1.923 4.18% 5.023 2.541 5.34%
DGCRN 2.753 1.569 2.87% 3.738 1.894 4.26% 4.987 2.394 5.27%
UG-STNN 2.740 1.684 2.93% 3.693 1.712 4.01% 4.816 2.467 5.04%
UG-STNN-A 3.601 1.958 3.57% 4.487 2.251 4.87% 5.894 3.194 5.86%

Fig. 6. Comparison between different model (Same dataset and vertex)

of the baseline model is the appearance of smoothness in
the model output caused by the stacking of multiple layers
of GCN modules. In terms of spectrogram theory, GCN
filters out the high-frequency components (i.e., data with
large feature differences) from the input data and retains the
low-frequency portion (data with small feature differences).
And therefore multiple layers of GCN stacking ultimately
result in smoothing and homogenization of the output data.
The results of this experiment are further evidence that
the introduction of unsupervised graph representation is an
effective means to solve this problem.

To sum up, it is believed that the proposed model
UG-STNN is an elegant and effective supplements to
graph-based deep learning model for traffic flow prediction
tasks.

V. CONCLUSIONS

In summary, this study argues that current traffic flow
prediction models based on graph neural networks suffer
from high training costs and smoothed outputs due to the
multi-layer stacking of GCN models. To address this issue,
a new node-level unsupervised graph representation module
has been designed to extract the spatial correlation of traffic
flow data. Combined with the spatial convolution module, a



Fig. 7. Comparison between UG-STNN & DGCRN (Same dataset and
time slice)

new UG-STNN model has been proposed for traffic flow
prediction tasks. Experiments have shown that the model
performs well on different test datasets, which demonstrating
its efficiency and stability.

In addition, this study has limitations as the datasets used
are limited to traffic flow data from California and the Los
Angeles metropolitan area. This type of data is typically
more stable, which may affect the model’s ability to handle
factors that can impact traffic flow, such as unexpected events
and anomalies. Future research could focus on enhancing
the model’s spatial modeling and generalization abilities,
improving its interpretability, and refining its ability to handle
abnormal situations. These improvements would further
enhance the model’s predictive performance and practical
application value.
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